平面図形の問題

2014年早稲田実業の問題です。


下の図のような角Bが60°の三角形ABCがあります。ADを折り目として三角形ABDを折り返したとき、頂点Bが辺AC上の点Eにきました。また、CFを折り目として三角形CBFを折り返したとき、頂点Bが辺CAを延ばした直線上の点Gにきました。次の問いに答えなさい。

(1)あの角度を求めなさい。

(2)ADとBEの交点をHとしたとき、三角形ABHの面積は三角形ABGの面積の何倍ですか。

【解説と解答】
(1)線分ADは角BACの二等分線になり、線分CFは角ACBの二等分線になります。

角BADを△、角ACFを○とすると、○○△△+60°が三角形ABCの内角の和になるので、
○○△△=180-60=120° ○△=120÷2=60°ですから、あは180-60=120°になります。

(答え)120°

(2)GC=8㎝、GA=1cmですから、三角形ABGは三角形ABCの\frac{1}{7}になります。

一方AE=5cmですから、三角形ABHは三角形ABCの\frac{5}{7}×\frac{1}{2}\frac{5}{14}になります。

したがって\frac{5}{14}÷\frac{1}{7}=2.5倍です。

(答え)2.5倍

「映像教材、これでわかる比と図形」(田中貴)
==============================================================
中学受験で子どもと普通に幸せになる方法、本日の記事は

夏休みは天王山ではない
==============================================================
今日の慶應義塾進学情報

正六角形の問題
==============================================================
慶應進学オンライン
==============================================================

==============================================================
にほんブログ村 受験ブログ 中学受験(塾・指導・勉強法)へ
にほんブログ村


カテゴリー: 各校の入試問題から   パーマリンク

コメントは受け付けていません。